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SUMMARY

The equations of motion end energy for the lsminary boundsz’y-layer
flow in an expansion wave of finite width moving into undisturbed fluid,
such as in a shock tube, were considered. Solutions in the form of
infinite power series for velocity and local enthalpy functions were

* indicated, -d the first three terms of each series were numerically
evaluated. Validity of the numerical results was restricted to the
region near the leading edge of the expansion wave. Skin friction and

●

heat transfer were compared with values given by a solution which con-
sidered the expmsion wave as equivalent to a ldne discontinuity across
which existence of isentropic expansion relations was assumed. These
solutions were shown to be very different, qualitatively as well.as
quantitatively. Singularities in the flow field were discussed in
regsrd to both the finite-width expansion-wave and the line-expansion-
wave solutions.

INTROIXJCTION

Extensive use of shock tubes for aerodynamic
emphasis upon the effects of using a real, rather

research has placed
thsn a perfect, gas.

The flow phenomena for an ideal fluid are-easily derived and sre given,
for exsmple, in references 1 to 3. Deviations from the ideal flow may
occur because the working fluid is imperfect and because fluid viscosity
and thermal conductivity introduce effects of the shock-tube walls upon
the flow. For moderate shock-pressure ratios, imperfect gas effects msy
be neglected, but the wall effects may remain important; the present
analysis considers only the fluid viscosity and conductivity.

*

Deviations from idesl shock-tube flow are most easily seen experi-
mentally through measurements of the shock-wave velocity. Experimental

‘9
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.

attenuations in shock strength were investigated in references 1, 2, 4,
5, and 6. Reference 6 also presented measurements of static-pressure
variations with time at a fixed position after passage of the shock wave.

* –.

Experimental timewise density variations in the flow through the use of
a chrono-interferometerwere shown in reference 7.

Various theoretical studies have been-carried out as well. Refer-
ences 1 and 4 considered a reduction in mass flow at the entropy discon-
tinuity computed from the boundary-layer displacement thickness and the
free stream corresponding to the unattenuated shock. Attenuation in the
shock strength was then found by setting the mass flow through the shock
wave equal to the reduced mass flow at the entropy discontinuity and com-
puting the new shock strength. The unsteady laminary boundary layer in
the hot gas behind the shock was derived in reference 2, and the resulting
skin-friction and heat-transfer effects averaged across the assumed one-
dimensional flow. The attenuation resulting from the waves generated at
the entropy discontinuity by these boundary-layer effects were then
computed.

In reference 6, waves generated throughout the entire shock tube by
skin-friction and heat-transfer effects were considered to affect the
real gas flow, average skin-friction and hea-t-transfercoefficients being *

based upon incompressible, turbulent, steady-flow flat-plate boundary-
layer values. The expansion wave was treated as a line discontinuity
across which isentropic relations were assumed to be valid (zero-thickness

u

expansion wave). Experimental data have shown excellent agreement with
this theory.

The assumption of the equivalence of steady- and umsteady-flow lsmi-
na~ boundary layers was shown to be rather inaccurate by the unsteady
lsminar boundary-layer theories of references 2, 8, and 9, which treated
the exact boundary-layer equations for the flow behind a shock wave moving
into an undisturbed fluid. Reference 9 extended the theory to laminar
flow behind a zero-thickness expemion wave and presented solutions to
the integrated equations of motion and energy for lsminar and turbulent
“boundarylayers behind both shock and zero-thicknessexpansion waves.
The boundary-lsyer theories of references 8 and 9 have been incorporated
into a theory predicting shock-wave attenuation in a shock tube (ref. 10). ‘

The turbulent boundary layer in an expansion wave of finite width
(expansion fan) was considered on an equivalent steady-flow basis in ref-
erence 11, but only recently has any attempt been madeto investigate the
unsteady boundary layer for this case. Reference 12 presents a solution
to the complete shock-tube bm.ndary-layer problem, including the fan, for
laminar compressible flow. The integrated equations of motion and energy
are considered and graphicsl snd numerical isoclinal procedures are uti-
lized. A feature of this theory is the use of the method of characteris-
tics to obtain the solution, a necessity because singularities originating
at the time of diaphragm burst propagate through the shock-tube flow field.
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The present paper presents an approximate solution to the differen-
tial boundary-layer equations of motion and energy for the unsteady
I-aminsrflow of a compressible fluid under the influence of the ideal-
fluid expansion-fan pressure gradient. Results are cmpsred with the
results of the expansion-discontinuity analysis of reference 9. Much
of the material presented herein was submitted to the University of
Virginia in partial fulfillment of the requirements for a Master of
Aeronautical Engineering degree.

SYMBOIS

local veloci~ of sounda

CP

CT

Fn

f

fn

Gn

g

E!n

h

ho

k

function definedby
(%7”’(?=)

function defined by

(%T”’r*)

coefficient of specific heat at constant pressure

coefficient of specific heat at constant volume

particular function of nth-order differential

dimensionless streem function

nth-order term in power-series representation

particular function of nth-order differential

dimensionless enthalpy function

nth-order term in power-series

local enthalpy

enthal.pydifference, h - ~

stagnation enthalpy

thermal conductivity

Prandtl number.

representation

ecy.uationof motion

of f

energy equation

of g
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P static pressure

R gas constant

q. rate of heat transfer

“

s

T

u

UB

v

P

v

constant in Sutherland viscosity-temperaturerelation

temperature

-t*

velocity of fluid in x- or ~-direction

wave velocity

shock velocity

velocity of fluid in Y- or y-direction

coordinate along

“incompressible”

wall

J
‘Y

coordinate normal to wall, ~w
o f’e

coordinate normal to wall

ratio of specific heats,

dimensionless coordinate,

absolute viscosity

kinematic viscosity

.

a
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dimensionless coordina%, 1 - +
U@

coordinate ~ evaluated at trailing edge of expansion fan

density

shear stress

A ‘w
‘w’—

{

pea +
t

TwT..=— r%%“g

‘=! stream function

.
e ,q) dmny

b Subscripts:

n

w

a

P

E

1

C9

index

variable of integration

of order of term in power

q~tity evaluated at

qwtity evaluated in
fig. l(a))

quantity evaluated in
fig. l(a))

quantity evaluated in
state e (see fig.

quantity evaluated in

quantity evaluated in

wall (y =

shock-tube

shock-tube

shock-tube
l(a))

i

(

3eries

3)

regjon u, cold gas (see

region p, hot gas (see

undisturbed reference

free stresm (y + m)

shock tube undisturbed low-pressure
region co (see fig. l(a))

Quantities written with a bar underneath are dimensionless with
respect to the appropriate quantity in the undisturbed region 6; fors

5

&J~
exsmple, ~ = ~, pl = —, and so forth.

ae — Pe
.

Prbes denote total differentiation of the functions fn(q) and
gn(~) with respect to the srgunent q.
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TEEORY

The Prandtl boundary-layer equations are reduced to a system of
two simultaneous, nonlinear, partial differential.equations involving
umsteady stream and enthalpy functions through a transfomnation of
coordinates. The special case of flow in an expansion fan advancing
into a fluid at rest is considered. Solutions in the form of infinite
power series are assured, and each partial differential equation is
reduced to an infinite number of ordinary differential equations. .

Af3sumptions

The assumptions necessary to the analysis which follows are:

1. The Prandtl boundary-lsyer equations ‘areassumed to be valid for
the expansion fan, which is considered as centered, that is, originating
at a single point on the x,t plane. A shock-tube wave diagram of the
ideal-fluid flow for an expansion fan of moderate strength is shown in
figure l(a). Figure l(b) illustrates qualitatively the corresponding ●

boundary layer. The point of origin of the fan at x = t = O (repre-
senting, for example, the diaphragm burst in a shock tube) is a singular
point and must be excluded from the analysis. The trailing edge of the

#

expansion fan, separating the fan and the region of constant fluid prop-
—

erties (region a in fig. l(a)), represents a discontinuity in the
derivatives of the stream quantities and thus also violates the boundary-
layer assumptions. Distortion of the trailing edge caused by varying the
velocity and temperature within the boundary layer is neglected.

In the region near the leading edge of the fan “thevelocity is low
and increases linearly in the ratio x/t from a value of zero at the
leading edge. This situation appears analogous to the region near the
forward stagnation point of a blunt body in steady flow and the Prandtl
boundary-layer assumptions, through this analog, are assured to hold in
this region. Therefore, the boundary-layer eqtitions are assumed to be
valid in the expsnsion fan except at the origin and along the free-stresm
trailing edge.

One additional restriction on the use of the boundary-layer equa-
tions must be noted for the special case of shock-tube flow. For a
strong expansion process, part of the expansion fan occurs in the region
where x > 0. The “no-slip” boundary condition at the wall requires that
the temperature discontinuity separating the_hot gas-of region j3 from
the cold gas of region a remain in the boundary layer extending back to
the position of the diaphragm. This case is illustrated in the ideal-
fluid wave diagram (fig. 2(a)) and in the corresponding boundary-layer
formation (fig. 2(-D)). At sane time after the diaphragm burst, lsminar

b“

*
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diffusion will have acted to smooth the discontinuity to some extent, but
large streamwise temperature gradients will still exist in the region
near the position of the discontinuity in the free stresm. This condition
precludes application of the Prandtl boundary-l~er equations. Elsewhere
in the region between x = O and the discontinuity, turning of the dis-
continuity surface toward the wall will probably have reduced the strewn-
wise temperature gradient sufficiently for the boundary-layer equations to
apply. Since the trailing edge of the fsn always lies upstresm of the
discontinuity, it is assumed herein that stresmwise temperature gradients
large enough to invalidate the boundary-layer equations never exist inside
the expansion fan.

2. The coefficients of specific heat, ~ ad cv, and the Prandtl
num-Derare assud to be constant.

3. A linesx viscosity-temperature relation is assumed. The constant
of proportionality is defined so that the correct wall viscosity is used;
the error introduced elsewhere in the boundary layer is neglected.

4. The wall tqerature is assumed to be constant. E!ecausewalls
are generally constructed of materials for which values of thermsl con-
ductivity and heat capacity per unit volume are high when compared with
the values for the gas, this assumption, which has been
vslid for flow behind a shock in reference 9, should be
for the exps.nsion-fananalysis.

The *SiC Equations of the Fluid Motion

The differential equations governing the unsteady,
flow of a compressible, viscous fluid under the Prandtl
assumptions are the equation of continuity

ap a(pu) + a(pv) _ ~
X+ ax ay

the equations of motion

shown to be
reasonably good

two-dimensional
boundary-layer

(1)

(2a)

(2b)
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the energy equation for constant N& and Cp

(_+vah=lh~+ ah __+
at %x ay P at ~~+v*)+&Ai,$+v(w “)

and the equation of state

-lh
P =pRT=yy (4)

The coordinate system is fixed to the wall, the origin of the x- and
t-axes being at the origin of the expansion wave. .Theuse of only two
space dimensions, x and y, implies thatinteractions between adjacent
wall boundary layers are neglected.

Equation (2b) immediately yields the result that the pressure is
constant across the boundary layer or that

..-S

P(x)Y)t) = P++) (5) - ,

Mwtiom (1), (2a), (3), and (4) then are to be solved for the four
dependent variables u, v, p, h. The appropriate boundary conditions
are —

U(x,o,t) = o

u(x,rn,t)= ul(x,t)

V(x,o,t) = o

h(x,O,t) =~(x,t)

h(x,w,t) = hl(x,t)
1

In order that the equations may be more generally applicable, the
enthalpy-at the wall is retained as a varia”ble.

(6)
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The Iinesr viscosity-temperaturerelation discussed by Chapman and
Rubesin (ref. 13) is employed; namely,

where the proportionality

that equation (7) satisfy

5 = CJx,t)~ (7)

function ~(x,t) is obtained by requiring
the Sutherland relation

‘(’t) ‘ (tT”’(H+)
A conventional transformation of coordinates

function are next introduced, the latter function
the equation of continuity. The definitions are

x=x

Jyp(x,y,t)
Y= Q

o P=

t=t

at the wall; thus,

(8)

and an unsteady stresm
identically satisfying

(9)

Equations (5), (7), and the transformation and stream function of
equations (9) are then simultaneously substituted into equations (2a)
aid (3); the resulting equations are, respectively,

(lo)



. 10 NACA TN 3943

●

(11)
.

The appropriate ~oundary conditions on the”streem function and enthalpy,
written in Z,Y,t coordil.nates,are

(12)

Equations (10) and (11) and the appropriate boundary conditions of
equations (12) thus describe the boundary-layer flow in a Very general
manner and require only the assumptions of constant ~ and N~ and

a linear viscosity-temperature relation. Solution of a particular
problem requires that the boundary conditions be given explicitly and
that the differential equations be further reduced. The exact form of
the boundary conditions will be shown to influence strongly the methods
of simplification of the differential.equations.

.

Timewise Conical Similarity

Similarity transformations.- Llsted in appendix A are the potential-
flow relations for flow in a centered expansion fsn. The equations for
U1 and hl are the free-stream boumhry conditions for the boundary-

layer differential.equations and are functions only of the ratio x/t;
tius, in a tif3tice-tw sense, the expansion-fan potential-flow variables
are conical. If, in addition, the wall temperature is assumed to be con-
stant, it is seen from equations (U) that all the well boundary conditions ●
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satisfy the conical requirement (that is, constancy), and it then appesrs
reasonable to search for solutions containing this conical similarity.

Similar stresm and enthalpy functions, f and g, respectively, are
defined as

$(X,Y,%) = u@~f(g ,q) (13)

where

.

E.=1-G
;t I

The enthalpy at the wall ~ is herein assumed
velocity ~ represents a wave velocity and is

(15)

to be constant. The

used so that, by emplo~..
the proper boundary conditions, equations (15) may represent the flow
behind a shock as well as in sn expansion fan. For the flow behind the
shock, the wave velocity is then us; for the flow in the expansion fan,

the wave velocity is considered to be the velocity of the leading edge of
the expansion fan and is equal to -aE. The parameter ~ is the conical
similarity parameter and is defined so that it is zero on the wave. The
diffusion parameter q is closely related to that employed in references 2
and 8. This relation may be seen by rewriting the psxsmeter as

‘=+ (15a)

me length ~~ - X is equal to
L

resemblance of this psmmeter to

.

the distance from the wave, and the close

that of the references is now evident.



u NACA TN 3943

.
‘l?ransfonnationof coordinates from X,Y,~ to ~,rj,~ through the

use of relations (15) and simultaneous introduction of the stresm and
enthal.pyfunctions (eqs. (13) and (lb)) reduce the equations of motion .

and energy (eqs. (10) and (11), respectively) to the following:

7
dp

)1=J(Lk+Q1*g~:‘oY

Boundary conditions are transformed from equations (12) and are

()&
h ~=o

=0

()&
aq =1

‘pea

1
f(g,o) = o I

(17)

(18)

The absence of the independent variable ~ from the differential equa-
tions (16) and (17) and from the boundary conditions of equations (18),
except implicitly, indicates the existence of solutions exhibiting simi-
larity in $ and ~ as was assumed in equations (13) and (14). The
number of-independent variables has therefore been reduced to two.
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Application to the centered expansion fan.- The special case con-

cerning flow in the boundary layer behind a shock wave advsncing into a
fluid at rest leads to a result identical to those of references 2 and
8. ‘ITELScase is discussed in appendix B. The differential equations

governing the boundary-layer flow in the centered expsnsion fan sre
found by substituting the,free-stresm relations of appendix A (equa-
tions (Al) to (A5) and (A7)) into equations (16) and (17) with the
further qualification that

‘-% ‘E=,-

(19)
=l+XE<

a=t

Results of this substitution are

)[ ]( )}*23+ (E-1)-*$3+5* +

[ ( )]%+(4-2~+-2~2g=o (20)

(21)
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,

The boundary conditions upon the functions f and g are the ssme as
those given by equations (18).

Because of the complexity of these partial CtLfferentialequations,
solutions are sought in the form of infinite power series, which are

.—
—

written in powers of the conicsl coordinate. E with the coefficients
as functions of q only. Thus, the solutions are assumed as

(22)

Because both of these partial differential.equationspossess singular
points in the region E >1 (see section entitled “Results and
Discussion”), the infinite series can only repre~ent the solutions in

——

the region E < 1. The first few terms of each series are considered to
—

approximate satisfactorily the exact solution in the region nesr the
leading edge E <<1.

—

One further assumption is desirable. The enthalpy at the wall has
already been assumed to be constant but arbitrary. The most comnon
shock-tube physical arrangement dictates that the wall temperature before
passage of the wave must be equal to the temperature of the undisturbed
fluid. Thusj if the wall temperature is assumed to remain unchanged after
passage of the wave because of the high thermal conductivity and heat
capacity of metal walls, then

.
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Substitution of equations (22) and (23) into the equations of motion
and energy (eqs. (20) and (21)), application of the bo~dary con~tions
(eqs. (18)), =d equation of coefficients of like powers of g succes-
sively leads to an infinite set of ordinary linear differential equations
snd boundary conditions for each function, the first three of which are

fo’”+ yo” - fo” = -1

fin’+ ~1” - 2f1’ = F1(v)

fz’”+ 32” - sfz‘ = F2(~)

fo(o) =fo’(o) =0

fo’(m) =1
}

fn(o) = fn’(o) =fn’(m) =0

g

+~of-Q=-l
N=

f31”
—+ &l’ - *1 = qd
%?

g21!

~
+ 32’ - 3g2 = G2(TI)

gJo) = o

~(m) .1
}

gn(”) = ~(m) = O

(24a)

(2MI)

(24c)

(25a)

(n20 (273)

(26a)

(26b)

(26c )

(27a)

(n21) (27b)
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with the following definitions:
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.

32
w) = *& ’--- 2 y + l%%” - fo’ + +,(fo’)2 +2* --

(28a)

27 flmF2(7) =— - 2fl’ + 3~fo’fl’ 32 5 2 flfo” -- _—f&l” - .—
7+1 7+1 27+1 27+1

q(v@t igo”; 7-5 ~,+
27+1NR 2(7 + 1) 2 *(fO”)’ -: *“@’+

2 fol_&fo’go - —
7+1 7+1

,27 g~” Y 7 ~ 2 f~go” +2_&f@l’ -2 ~G2(q) = — — -
7+1 Npr 2(7; l)gl - 27+1

(28b)

(28c)

A

--

22 -fl ‘go 2 follflI!-2 -fll+ 2—~fo’gl + -—
7+1 7+1 7+1

3P + 187 -13 go” ~

4(7+ 1)2 %%

# -147 + 13 ~o,

4(7+ 1)2 2 -X+)(-)fd -

+3 2 7-lF0, Q
27+17+1

(28d)

The primes on a symbol indicate differentiationwith respect to the
argument ~.

. —

Numerical integration of the preced.ng equations can be accomplished
with no special difficulty. The momentum and energy equations for the
nth functions are decoupled and hence may be
partig@xm integral-s Fn(T) and Gn(~) &e

solutions.

solved independently. The
dependent only on previ~iw

*

.
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Equations (24) to (28) are solved for fn(~) and gn(~)

respective derivatives, for n = O, 1, and 2. These solutions
mske possible appro&tion of the-stream and enthalpy
following relations which are vslid in the vicini~ of

t3(E,v) = go(v)+ Eqbl) + E2@l)

Velocity and enthal.pyprofiles are given by

functions by the
the leading edge:

(29a)

(29-D)

h++ h-%—=
hl* %-%

=13(E,q) = l!@l) + EgJn) + E%Jn)

Skin Friction and

The skin friction is given by

and their

then

(30a)

(30b)

(31)

This relation is trsmsformed to the 5,7,% coordinate system through
the transformation equations (9), (13), (14), and (1>);
tion yields the dimensionless friction

Heat Transfer

Finally, for the special case
tions (23), it is seen that

of expansion-fan boundaxy

the transforma-

(32)

layer, from equa-



where

NACA TN 3943

(33)

[1$f(g, v) =fo’’(o) + Efl’’(o)+#f2’’(o) (33a)
~72 p3

The heat transferred per unit time per ~it s~face mea from thg
wall to the fluid ~ Is given by the relation

()~=+zw (34)

The transformation to the E,n,; system is accomplished in the ssme
manner as for the
trsmsfer

The
is

fiw=

expansion-fan

where

-.

m

●

-s-

kin friction and yields the dimensionless heat

wall heat transfer is

[+]
%* ag(E )

3 v @
(35)

—

—

obt_d.nedfrom equation (35) and

(36)

(36a) - .

.

.
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Transformation to the Physical Plane

The transformation to the -physicalcoordinate system is csrried out
by using the profile functions. The incompressible normal coordinate Y
was defined by equations (9). The reverse transformation is

J

Y p=
Y’ U= :.

J

y h(~,Y,~) ~

o P(=,y,~) ~l(x>t) O he
(37)

Since the local enthal.pyis given as a function of ~ and q by
equation (30b), the integration of equation (37) is most easily accom-
plished in those coordinates. The trsmsformation equations defining ~
and

The
and
snd

q (eqs. (15)) are used to define the differential dy as

(38)

integration (eq. (37)) is
thus at constant ~ and
(37), the physical normal

to be carried out at constant X and ~
~; as a result of combining equations (@)
coordinate y is

Substitution of the enthalpy
of the terms, replacement of
equation (39) yields for ~

function from equation
~ by its equivalent
= h~:

(30b),
t, and

(39)

,resrrangement
integration of

.

The quantity +

mv= t
.

incompressible similarity
and q.

is the physicsl compressible counterpart of the

parsmeter q snd is a function only of ~
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RESULTS AND DISCUSSION

.

Numerical Results

Each of the homogeneous Mfferential equations corresponding to the
complete equations (24) and (26) was transformed to I&mite’s differential
equation and complementary solutions in the form of Hermite polynomials
were obtained. (See ref. 14.) Except for the n = O case, particular
solutions appeared to be unobtainable in cl~sed form. Rather than combine
the Hermite polynomials with particular integrals found by numerical pro-
cedures, it was decided to treat by numerical methods the canplete equa-
tions for the cases n >1.

In reference 15, the leminar boundary layer on a flat plate uniformly
accelerated from rest was investigated. The resulting momentum equation
and boundary conditions for the initial motion of the plate are equivalent
to those of the present analysis for n = O (eqs. (24a) and (25a)) and the _
complete solution (from ref. 15) is therefore

It canbe sh% that the first term on the right-hand side of equation (42)
is the particular integral and the two remaining terms are the exponential
form of the appropriate Hermite polynomial, the complementary solution.

The energy differential equation is of the same form as the momentum
equation, and the following solution may be deduced:

2
go(v)= -Nm ~

These functions
in tablel for

‘P

satisfy the respective

‘Pr equal to 0.72.

m

boundary conditions and sre given

.
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Numerical integration of the higher order differential.equations was
carried out on the l?ellTelephone Laboratories x-667bb,relay computer at
the Langley Laboratory by using a modification of the Runge-Kutta fourth-
order method given in reference 16. (The ratio of specific heats 7 was
set equal to 1.4.) Results of these computations are listed in tables II
snd III. The functions most important to the analysis are fn’(~) ~d

~(q)~ the nth order velocity ~denthalpy profiles, respectively; plots

of these functions are given in figure 3.

The actual velocity and enthalpy profiles in the ~,q,~ coordinate
system sre approxhated by equations (ma) end (~b) and have been com-
puted for values of g equal b O, 0.1, 0.2, 0.3, snd 0.5. The results
of this computation are shown in figure 4. Since the power series for
“trothvelocity and enthalpy profiles neglect terms of order ~3j the results
are considered to be quantitatively correct only in the range o SE S003.”
Extension of the results up to ~ . 0.5 is included for qualitative indi-
cation of trends. Skin-friction and heat-transfer functions sre shown in
figure 5 with three approximate formulas for each, corresponding to taking
one, two, or thee terms of the power series.

The transformation integrals were computed by graphical integration
of the appropriate functions given in tables I to 111, and are listed in
table IV. The function defined by equation (@) is computed for values
of ~ of O, 0.1, 0.2, 0.3, and 0.5, and the results are plotted in fig-
ure 6. Theoretical velocity and enthalpy difference profiles in the
physical X,y,t coordinate system have been computed and are given in
figure 7 for values of ~ of 0.1, 0.2, 0.3, and 0.5 with the infinite
series approximated by the three term series. The normal coordinate

/parsmeter y @ Iis used in place of y ~~ so that adjacent pro-

files may be’more easily distinguished. ‘

Discussion of Results

As mentioned previously, the zero-order momentum equaticn for the
present case was found to be identical to that of reference 15, the ini-
tial motion of a flat plate uniformly accelerated from rest. This result
is not surprising in view of the fact that the present case may be con-
sidered to be a form of constant acceleration; that is, the potential-
flow velocity varies linearl.ywith the conical coordinai% ~. The
respective coordinates of the reference are also closely related to the
coordinates ~ and q used herein.

Figures 4 andy are apparently contradictory; figures b(a) and b(b)
. show profiles becoming increasingly full as ~ is increased whereas the

corresponding plots of figures T(a) and T(b) indicate velocity and
enthalpy difference profiles behaving in the opposite manner. This
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condition is the effect of distortion of the normal coordinate by plotting
it in the incompressible q-plane as opposed..$oplotting it in the physical

/
y G-plane, and no contradiction actually exists.

For ~ equal to 0.5, both velocity and entmPY ~fference Profiles
in figures 4 and 7 show a slight tendency to oscillate once near the free-
stream boundary, the latter profile actually exceeding a value of unity
inside the boundary layer. The trend indicates that the velocity also
will exceed unity within the boundary layer ‘forvalues of ~ larger
than 0.5. Because the amplitude of oscillation is extremely smell and
the estimated error of the present solution for the three-term-series
approximation is of the order of 53, these-results are open to question.
However, velocity profiles exceeding unity have been encountered in
steady-flow theories under conditions of a strong favorable stream pres-
suxe gradient and high ratio of wall temperature to stresm temperature
(ref. 17); such stresm and wall conditions are present nem the leading-”
edge of the expansion fan. Thus, although ~ese profiles must be ques-
tioned in view of the limits of validity of the present series solutions,
the velocity profile, at least, is typical of certain steady-flow velocity
profiles in fluid undergoing similar processes.

The heat transfer given by the three-term-seriesapproximation
(fig. 5(b)) apparently reaches a maximum at ~ -0.4 and then decreases.
This result may be qualitatively explained by considering the difference
between the wsll enthalpy and the stream sta~tion enthalpy, which
forms
ho,l

given

a sort of heat-transferpotential. The stream stagnation enthalpy
is derived from the expansion-fan rela~ions of appendix A and is .

by

(44)

The dimensionless potential, >- ~,1 for the case ~ = he, is

plotted in figure 8. The rate of heat transfer follows the same general
trend as the total enthalpy difference for an increase in the conical
coordinate near the leading edge, ..- .—

If this line of reasoning is followed, one might expect that, in the
region where the stagnation enthalpy difference becomes very strongly
negative, the rate-of heat transfer might also become negative and wod”d
thus indicate heat transfer from the fluid to the wall. ‘lIhisis indeed
the case with the integral solution of reference 12 where the heat-
transfer function goes from positive to negative at a value of the conical
coordinate 5 = 1.5. The present solution cannot he carried to that

.

..JL

.

. .-

—
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extent, ‘butexamination of the enthalpy function of the second power of
~ (g2(q) in fig. 3(b)) indicates a reversal of sign in the derivatives

at the wall (q = O); thus, a tendency for the heat transfer to reverse
iS shown. This term in the power series increases in importance with
increasing ~ and lends support to the belief that regions of negative
rates of heat transfer (from fluid to wall) exist beyond the region of
validity of the present solution.

Comparison With Solution of Zero-Thickness Expansion Wave

Reference 9 considers the expansion fan as a wave of zero thickness
propagating into fluid at rest at a velocity equal to -ae. The wave

diagrsm for the special case of shock-tu~e flow under this assumption is
shown in figure 9(a); the true fan is illustrated in fi~e 9(b). The
zero thickness wave coincides with the line ~ . 0. Isentropic expansion-
fan relations are assumed to hold across the zero-thicknesswave, snd the
entire region fran the wave to the temperature discontinuity is assumed to
Le a region of constant stream properties and corresponds to region a in
the true shock-tube case. Cmparison of the results of the present ahaly-
sis with those of referetice9 is carried out on the basis of equal poten-
ti%i flows. mt is, if the value of ~ at the trailing edge of the
expansion fan ~~ is given, free-stream variables in the constant poten-

tial flow region a
(
that is p+, &,

)
and so forth may ‘~efound from

appendix A (eqs. (Al) to (A5) evaluated at ~ti). These variables are

also the free-strewn varia”~lesfor the corresponding zero-thickness
expansion-wave solution. Since the present analysis does not consider the
region ~ > ~& (region a), comparison must be restricted to the region

os~s~k for each case, although the results of reference 9 are

extended beyond this region in figure 10. The asterisks appearing on the
curves represent the appropriate positions of ~te.

Skin-friction and heat-transfer functions are shown in figure 10 for

ete equal to 0.1, 0.2, 0.3, and 0.7, the present solution corresponding

to the three-term (quadratic)power-series approximations (eqs. (33a) and
(36a)). It is apparent that the two solutions are very different; the
skin friction and heat transfer for each zero-thickness expansion solution
approach infinity at the wave k = 0, whereas the corresponding functions
for the expansion fan vanish. One might consider this behavior analogous
with that of a flat plate and of a blunt body in steady flow. Skin fric-
tion and heat transfer at the leading edge of a flat plate are infinite
whereas, at the forward stagnation point of a blunt tiody,friction vanishes
ad heat transfer is finite, depending upon wall temperature. Whether
these discrepancies are important in computing shock attenuation, however,
will depend upon the strength of the wave in question. For weak waves,
although the details of the flow within the narrow fan have been shown to
“bevery different, effects upon shock attenuation may be small as they
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represent integrated wall shear and heat transfer far downstream. Here
the steady-flow analogy is with the flow well downstream of the leading .

edges of”the flat plate and the blunt body where the leading edge is not
importsmt. For strong waves, however, the flow within the fan may
seriously influence the shock wave. It shtidbe pointed out that
although the computations of reference 9 were carried out for strong as
well as weak expansions, the limitations of%he aruilysiswere therein
recognized.

It is of interest to note that, at E = Eti in the zero-thickness-

wave case, the skin-friction smd heat-transfer functions are approximately
one-half the corresponding expansion-fan values. This relation is more
evident if skin-friction and heat-transfer e-oefficientsdefined by

are considered. For the present solution, combination
and (45) and of (36) and (46) yields, respectively,

The corresponding coefficient form from reference 9 is

(45) ._

(46)

of equations (33)

(47)

(48)

independent of

.

.

coordinate- ~ ~d is a function only of efiamsion strength- ~te. These

coefficients are shown in figure ll; the values from reference 9 are
m

approximately one-half those of the presegt+solution. This relation is
exact for the ii?@.t ~te = O (an infinitesimallyweak wave) where the

following values apply:
.,.=
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.

The zero-thickness-wavecase is discussed further in appendix B. A
nnre detailed comparison of the finite-width and zero-thickness expansion
waves is made in reference 12.

Singularities in the Flow Field

The equations of momentun and ener~were transformed to the ~,q,%
coordinate system (eqs. (16) and (17)) and then specialized for the case
of the centered expansion-fan potential flow (etas.(20) and (21)). It iS

of interest to no~ that
cal singularities in the
expression

1-

the ~orementioned e&&tio& indica& &themati-
flow field. This condition can be observed in the

(49)

which is the coefficient of the highest order derivative with respect to
~ in each of the ps,rtialdifferential equations. For 1~~~1+~~

this term vanishes scnnewherein the boundary layer andl as a result, the
solution becam nonsnal@ic (that is, a singular point). In the x,y,t
coordinate system, the singularity occurs at a position

(-)x
act

. ~ ~ = ll(x,y,t)

Singularity

It is evident, since u is always positive (in the positive x-direction),
that the singularity d-ways appears in the region x z O and is actua~y

The appearance of these singularities is discussed in reference 18
in regard to the impulsive motion of a semi-infinite flat plate in an
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incompressible fltid. David Adsmson has made an independent investigation
of this case at the Langley Laboratory and he argues that, although the
vorticity generated at the plate surface at the start of motion diffuses

.

normal to the surface at an infinite rate, the Prandtl boundary-layer
—

assumptions allow no diffusion of vorticity in the streamwise direction.
At the origin of motion, the flow field of this case consists of the
undisturbed fluid &head-”ofthe leadlng edge, and the fluid behind the
leading edge through which the vorticity of starting has already spread

—

in a dlrecti.onnormal to the surface. A line singularity separates these
—

regions and, as time progresses, this singu@rity is swept downstream.

The singularities in the expansion fan may be considered in an analo-
gous fashion as originating at the point x = t = O (the diaphragm sta-
tion at burst in shock-tube flow, for example) tith vorticity generated at

--

this point and diffused immediately only in the normal y-direction. As
time progresses, the singularity is swept downstream (in the positive
x-direction). When the expansion fan is supersonic (~te > 1), these

singularities appear in the fan itself; thus, the present series solu-
tion is limited as already discussed.

.—

The singularities exist, however, even when the expans$on fan is sub-
sonic, that is, gte <1. The condition of a nonanalytic solution must

still occur in the region where ~ ~ 1 even though this region msy be down-
stream of the expsnsion-fan trailing edge because the physical reasoning
describing the diffusion of vorticity is qualitatively independent of
expansion-fan strength. As a result, one would expect the analysis based -
upon a zero-thickness expansion wave to exhibit singular behavior in the
region ~ z 1. The fact that no such behavior was evident in the data of
reference 9 is attributed to the fact that the origin of the wave (for
exsmrple,the diaphra~ burst) was neglected therein when the flow was
assumed to be steady with respect to a coordinate system fixed to the wave.
The zero-thicknesswave, as applied to the 8_hocktube in references 6 and
10, therefore implied a wave which originated at t = a , propagated at
a constant velocity.equal to -a=, and passed through the point x = t . 0

on the x,t diagram (fig. 12). Consideration of the zero-thicknessexpan-
sion wave by the present method (see appendix B) does result in the
expected mathematical singularities.

CONCLUDING REMARKS

—

—

—

A solution to the lsminar boundary-layer equations that is valid near
the leading edge of an expansion wave of finite width has been obtained.
Application of the results to the calculation of real gas flow in a shock

—
,

tube by the method of NACA Technical Note 3375 involves the use of the
skin-friction and heat-transfer results along with like functions appro-
priate to the cold-gas constant-potential-flowregion. The present

.
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solution could also be adapted for application to the ~thod of NACA
Technical Note 3278 by computation of the veloci~ normal to the wall.
For this application, solutions in the region between the fan trailing
edge and the temperature discontinuity, including the associated singu-
larities, also would be required.

The zero-thickness expansion-wave solution of NACA Technical
Note 3712 indicates the skin-friction and heat-transfer results to be
very different from those obtained herein. In principle, then, substi-
tution of a zero-thicknesswave for a true expansion fan in computing the
boundary layer must be questioned both on grounds of accuracy near the
leading edge and of omission from the consideration of the singularities
in the flow field in the region downstream of the position of the origin
of the wave. h application to the shock-tube case, however, the results
of NACA Technical Note 3278 indicate that the hot gas compressed by the
shock is the primary factor influencing shock-wave attenuation for moder-
ate pressure ratios; thus, in practice, assumption of a zero-thickness
expansion wave may not seriously affect the theoretical attenuation
results.

No experimental in.mdary-layer data for laminar flow in a centered
expansion fan are available. Local heat-transfer rates within the fan can
be measured, and such measurements may substantiate the present theory.
Data on shock-wave attenuation are plentiful, but little information
regarding the fan may be deduced since the effects of the shock-ccznpressed
gas generally predominate and flow Reynolds numbers are frequently in the
turbulent rsmge. Future application of the integral solution to turbulent
boundary layers should afford both direct and indirect checks on that
theory and should lead to more definite conclusions regarding the present
theory.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

~ey Field, Vs., December 3, 1956.
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APPENDIX A

.

.

FREE-S’I!RFAMRXIJM!IONSIN TEE EXPANSION FAN

The eq~tions defining the flow parameters of a fluid undergoing
acceleration in a centered expemsion fan ~ listed, for example, in
reference 1 to 3 end are reproduced below in terms of the coordinate

E ==-+1:
aEt

%- =1-’=4
7+’

2Y
~()%= %

The stream viscosity is written by using

—

(Al)

(M)
J.

(A3)

(A4)

(A5)

the Sutherland relation as

.

(A6)

Equation (A6)
definition of

the viscosity

is combined with the equation of state (eq. (4)) and the
Cw (eq. (8)),;from the resulting relation are obtained

terms in the differential equations of motion and energy

~
~lplcw = p

-1 cc
(A7)

m

.
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where

Equations (8) and (~) may be combined to yield

For the special case ~ = T=, it is seen that

%1—=
c=

‘2s’

(A8)

(A9)

(no)

.

.

.
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APPENDIX B
.

.

BOUNDARYLAYER BEHINDSHOCK OR ~0-THI-SS

EXPANSION WAVE MOVING IJYIQFLUID AT REST

The flow behind a shock wave or a zera-thicknessexpsmsion wave may
be considered by utilizing the theory of this paper modified for constant
potential flow. The x,t diagram of figure 9(a) shows both cases.
Although the shock wave advances into the low-~ressure region CO,region

.-

remains the reference for both solutions. The wave velocity uw is equal

to us in the shock-wave case and is equal to -ae in the zero-thickness

expansion-wave case.

The following relations result from the equations of motion and
energy (eqs. (16) and (17)) for constant potential flow:

(Bl)

Boundary conditions are the same as those given by equations (18) and the
coordinates ~ and ~ are defined in equations (15); these values are
valid for both cases under consideration. Note that ~ is zero on the
wave in each case. Solutions in the following regions are desired
(see fig. 9(a)):

(a) Shock-wave case; region ~
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(b) Zero-thickness expansion case; region a

31

os~ =1+ -&(l+.l)

Note also that

and that, in general,

(%)a+ (%)P

s Direct solutions of equations (Bl) and (EQ) appear unlikely. The
coefficient of
equations (Bl)

the leading
and (B2) iS

partial derivative with respect to
‘@ven by

-1

[ -l-[-’)+d(E-l)+~M- (g

and the vanishing of this coefficient introduces
flow field at positions given by

%l>g~~-_
%

or

for the flow behind a shock, and

singulexities

E in

into the
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.

.

for

and

the case of flow behind a zero-thicknessexpansion fan.

Power-series solutions are assured, as in the expansion-fan case,
are given by

(B3)

(M)dE, n) = ZJr-’%(n) .—

*
Because of the location of the singularities, it is apparent that this
power series is valid only in the following regions: -—

Shock-wave case:

Expansion-wave case:

For the flow behind the shock, this region is precisely the region P;
hence the series solution is sufficient. The region of validity of the
series solution for the expansion-wave case is only -partof the cold-

T

gas region a, and it is in this region that the series solution will
—

be inadequate.

Equations (B3) and (B4) are substituted into equations (Bl) and (B2);
after expanding and collecting terms, coefficients of like powers of 5
are equated. The first three equations of each set and the corresponding ‘.—

boundary conditions are

.
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fo(o) = o

fo’(o) = o

fo”(m) = .1
t

fn(o) = fn’(o) = fn’(m) = o (n21,

(B5b)

(B5c)

(B&)

(B6b)

(B7a)

(B~)
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go(o) = o

}

(B&)
g&o) =1

gJo) = fJ.&J) = o

Equations (B5a) snd (B7a) for fo and go may be integrated numeri-

cally. Solutions of the remaining equatio~ are

(B9)

~us, both infinite-series representations of the f~ctio~ reduce to the ._
simple relations

●

(B1O)
.

For constsnt potential flow, the similar stream and enthalpy functions
are functions of q only, a result which could have been obtained directly
by modifying the similarity transformations (eqs. (13) snd (14)).

Equations,(B5a) and (B7a) and the appropriate boundary conditions may
be transformed into equations (9) snd (10) of reference 9 for both shock
and zero-thickness expmsion waves if the special case ~ = he iS co~id-

ered. For this reason, no attempt b evaluate the constant-potential-flow
solutions is made herein. Singularities apparent in thg present solution,
however, were not evident in reference 9. These singularities represent
vorticity, generated by the start of motion at t = 0, which diffused
normal to the wall at an infinite rate sad then was washed downstream. By
considering both problems as independent of time when treated in a coordi-
nate system fixed to the wave, reference 9 neglected the start of motion
snd hence, in the shock-tube case, implied &wave wuch originated at
t

.—
-m) ProPMated t@ough the ??oint x = t..=o> ad c~tinued on- ~

th~s case singularities were thus not evident.
— .—

*

Figure (12) shows the location of the singularities. When the flOw
behind the shock wave is considered, only region p is of interest; thus,

—
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.

the singularities existing outside this region do not affect the solu-
tion. Only flow behind the zero thickness expansion wave involves.
singular behavior within the region of interest, and this phenomenon
should, in principle, be considered in cmrputing shock-tube boundary
layer. The expansion-wave solution of reference 9 then is actually
valid only in the region OSE<l.
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TABLEI.- VELOCITY AND ENTHAIPY FUNCTIONS, n = O TERMS
.

[
Nw 1=0.72

7 fo fo ‘ fo“ @ %3”

o 0 0 1.1284 0 0.9575
.20 .0213 .2064 .9396 .1775 .8203
.40 .0802

● 3773 .7732 .3290 .6969
.60 .1702 .3172 .6284 .4572
●W

.5868
.2834 .6301 .5043’ .5646 .4897

1.00 .4208 .7201 .3993 .6539 .4048
1.20 .5722 .7910 .3119 .7273 .3314
1.40 .7362 .8459 .2k02 .7872 .2&17
1..6o .9098 .8&30 .1823 .8357 .2157
1.80 1.0908 .9197 .1364 .8740 .1713
2.00 1.2772 .9432 .1005 .9045 .1346
2*2O ~. 4677 .9604 .0729 .9283 .1047
2.40 1.6612 .9728 .0521 .946a .0805
2.60 1.8567 .9816 .0366 .9609 .0613
2.80 2.0537 .9878 .0253 .9715 .0461
3.00 2.2518 .9920 .0172 :

● 9795 .0343
3.20 2.4505 .9948 ,0115 .9854 .0252
3.40 2.6497 .9967 .0076

● 9@7 .0183
3.60 2. 8k92

● 9979 .0049 .9929 ,0131
3.80 3.0489 .9987 .0031

● 9951 .0093
4.00 3.2ti8 .9992 .0020. .9967 .0065
4.20 3.4487 ●9995 .Oow .9978 .m45
4.40 3.6486

● 9997 .0007 .9985 .0031
4.60 3●8486 .9998 .0004 ●9990 .0021
4.80 4.0486 ● 9999. .0003

● 9994 .0014
5.00 4.2k87 l.cxmo .0001 ●9996 .0009
5.20 4.4487 1.0000 .0001 *9997 .0006
5.40 4 e 6488 1.0000 .0000 .9998 ,0004
5.60 4.8488 1.0000 .OoOQ ●9999 .0002
~.g 5. 048=!3 1.0000 .0000 .9999 .0002

5. 2M9 1.0000 .0000 1.0000 ● 0001
6;20 ;.& 1.0000 .0000
6.40

1.0000 .0001
1.0000 .0000 1.0000

6.60
.moo

5:8490 1.0000 .0000 1.0000 .0000
6.80 6.0491 1,.0000 .0000 1.0000 .0000
7.00 6.2491 1. OQoo .0000 1,0000 ,0000

.

.

.

b
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TABLE II.- vxlmcITYAND ENTHAWY FUNCTIONS, n = 1 TERMS

[
NR

1
s 0.72; ~ = 1.4

7 f~ f~ f fill
q 131‘

o 0 0 0.7946 0 0.1507
● 20 .0142 .1336 .5487 .0370 .2084
.40 .0505 ● 2222

● 3437 .0798 .23-25
.60 .1006 .2738 .1783 .1198 .1835
.80 .1580 .2960 .0’502 .1521 ● 1373

1.00 .2175 .2961 -.0439 .1743 .0852
1.20 .275k .2805 -.1080 .1863 .0350
1.40 .3291 .2546 -.1468 .1888 -.0086
1.60 .3769 .2231 -.1652 .1834 -.0434
1.80 .4182 .1896 -.1680 .1721 -.0684
2.00 .4528 ;l%; -.1597 .1567 -.0843
2.20 .4810 -.1443 ● 1389 -.0922
2.40 .5035 .0992 -. u252 .1202 - ● 0935
2.60 .5210 .0762 -.1048 .1018 -.0899
2.80 .5342 .0572 -.0850 .0845 -.08p
3.00 .5441 ..0421 -.0670 .0688 - ● 0740
3.20 .5’513 .0303 -.0514 .0549 -.0640
3.40 .5564 .0213 -.ofik .0431 -.0540
3.60 .@o .0147 -.0280 .0333 -.0445
3.80 .5624 .0100 -.0200 .0253 -.0358
4.00 .5641 .m66 -.0139 .0189 -.0283
4.20 .3651 .0043 -.0095 .0139
4.40

-.0219
.5658 .0027 -. w63 .0101 -.0166

4.60 .5663 .m17 -. m141 .M72 -.0124
4.80 .5665 .00SL -.0026 .0050 -.0091
~.oo .5667 .0006 -.0016 .0035 -.0066
5.20 .5668 .c004 -.0310 .0024 -.0046
5.40 .5669 .0002 -. c006 .0016 -.0032
5.60 .5669 .0001 -.0003 .0011. -.0022
5.80 .5669 .0001 -.0002 .0007 - ● 0015
6.02 .5669 .(X3O1 -.0001 .0004 -.0010
6.20 .5669 .0000 -.0001 .0003 -.mo6
6.40 .5669 .0000 .0000 .0002 -.0004
6.60 .5669 .moo .0000 .00Q1 -.0003
6.80 .5669 .000Q .0000 .0001 -.0002
7.00 .5670 .0000 .0000 .Oooo -.ci)ol
7.20 .5670 .0000 .0000 .0000 -.0001
7.40 .5670 .0000 .0000 .0000 .0000
7.60 .5670 .Oooo ● moo .0000 .0000
7.80 .5670 .0000 .0000 .Oom ● 0000
8.00 .5670 .0000 .Oooi) .0000 .0000
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a ,



z
.

N.ACATN 3943 41

.

.

.

TABLE IV.- ENTHKWY INTEGRAL
J
~“ ~(~)dv

[ 1n= O, 1, =d 2; NW = 0.72; Y = 1.4

o
.2
.4
.6
.8

1.0
1.2
1,4
1.6
1.8
2.0
2.2
2.4
2.6’
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
>.0
5.2
‘3.4
5.6
~.:

612
6.4
6.6
6.8
7.0

0
.022
.070
.149
.253
.380
.512
.670
.823

1.000
1.18
1.37
1.54
1.74
1.92
2.13
2.32
2.52
2.72
2.92

;:$
3.52
3.72
3.92
4.12
4.32
4.52
4.72
4.92
5.12
5.32
5.52
5.72
5.92
6.I_2

0
. cm4
.015
.035
.064
.095
.132
.169
.208
.244
.275
.304
.330
.352
.372
.387
.398
.408
.416
.422
.426
.429
.431
.432
.434
.435
.436
.436
.437
.437
.437
● 437
.437
.437
.437
.437

0
.000
.003
.011
.025
.041
.057
.071
.082
.089
.091
.088
.084
●0’75
.065
.O*
.042
.031
.022
.01.2
.004

-.002
-.m8
-.013
-.016
-.019
-.021
-.023
-.024
-.024
-.025
-.025
-.026
-.026
-.026
-.026
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